Fractional Pebbling and Thrifty Branching Programs

نویسندگان

  • Mark Braverman
  • Stephen A. Cook
  • Pierre McKenzie
  • Rahul Santhanam
  • Dustin Wehr
چکیده

We study the branching program complexity of the tree evaluation problem, introduced in [BCM+09a] as a candidate for separating NL from LogCFL. The input to the problem is a rooted, balanced dary tree of height h, whose internal nodes are labelled with d-ary functions on [k] = {1, . . . , k}, and whose leaves are labelled with elements of [k]. Each node obtains a value in [k] equal to its d-ary function applied to the values of its d children. The output is the value of the root. Deterministic k-way branching programs as related to black pebbling algorithms have been studied in [BCM+09a]. Here we introduce the notion of fractional pebbling of graphs to study nondeterministic branching program size. We prove that this yields non-deterministic branching programs with Θ(kh/2+1) states solving the Boolean problem “determine whether the root has value 1” for binary trees this is asymptotically better than the branching program size corresponding to black-white pebbling. We prove upper and lower bounds on the fractional pebbling number of d-ary trees, as well as a general result relating the fractional pebbling number of a graph to the black-white pebbling number. We introduce a simple semantic restriction called thrifty on k-way branching programs solving tree evaluation problems and show that the branching program size bound of Θ(kh) is tight (up to a constant factor) for all h ≥ 2 for deterministic thrifty programs. We show that the non-deterministic branching programs that correspond to fractional pebbling are thrifty as well, and that the bound of Θ(kh/2+1) is tight for non-deterministic thrifty programs for h = 2, 3, 4. We hypothesise that thrifty branching programs are optimal among k-way branching programs solving the tree evaluation problem proving this for deterministic programs would separate L from LogCFL and proving it for non-deterministic programs would separateNL from LogCFL. c © Braverman, Cook, McKenzie, Santhanam, Wehr; licensed under Creative Commons License-NC-ND 2 FRACTIONAL PEBBLING AND THRIFTY BRANCHING PROGRAMS Figure 1: A height 3 binary tree T3 2 with nodes numbered heap style.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pebbling and Branching Programs Solving the Tree Evaluation Problem

We study restricted computation models related to the tree evaluation problem. The TEP was introduced in earlier work as a simple candidate for the (very) long term goal of separating L and LogDCFL. The input to the problem is a rooted, balanced binary tree of height h, whose internal nodes are labeled with binary functions on [k] = {1, . . . , k} (each given simply as a list of k2 elements of ...

متن کامل

A Pebbles and Branching Programs for Tree Evaluation

We introduce the tree evaluation problem, show that it is in LogDCFL (and hence in P), and study its branching program complexity in the hope of eventually proving a superlogarithmic space lower bound. The input to the problem is a rooted, balanced d-ary tree of height h, whose internal nodes are labeled with d-ary functions on [k] = {1, . . . , k}, and whose leaves are labeled with elements of...

متن کامل

Fractional Pebbling Game Lower Bounds

Fractional pebbling is a generalization of black-white pebbling introduced recently. In this reasearch paper we solve an open problem by proving a tight lower bound on the pebble weight required to fractionally pebble a balanced d-ary tree of height h. This bound has close ties with branching programs and the separation of P from NL.

متن کامل

Critical Pebbling Numbers of Graphs

We define three new pebbling parameters of a connected graph G, the r-, g-, and ucritical pebbling numbers. Together with the pebbling number, the optimal pebbling number, the number of vertices n and the diameter d of the graph, this yields 7 graph parameters. We determine the relationships between these parameters. We investigate properties of the r-critical pebbling number, and distinguish b...

متن کامل

Pebbling Arguments for Tree Evaluation

The Tree Evaluation Problem was introduced by Cook et al. in 2010 as a candidate for separating P from L and NL [2]. The most general space lower bounds known for the Tree Evaluation Problem require a semantic restriction on the branching programs and use a connection to well-known pebble games to generate a bottleneck argument. These bounds are met by corresponding upper bounds generated by na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009